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The radiative corrections to the weak decays have been calculated using two electromagnetic formalisms 
for the vector bosons. The energy spectrum for the electrons from muon decay is obtained and is found to 
reduce to the old form, obtained using the four fermion interaction, when the mass of the boson becomes 
infinite. The effective value of the Michel parameter is calculated. It seems unlikely that the electromagnetic 
effects of a boson would be observed through a study of the spectrum shape. The spectrum we have calcu
lated satisfies Kinoshita's theorem. The results for muon decay are independent of the vector meson for
malism employed. It is found that the bosons can reduce the corrections to the O14 decay lifetime to 1.2%, 
although the reduction depends upon the choice of formalism. The boson mass provides an effective cutoff 
which renders the over-all correction to the lifetime finite. This was not previously the case. Finally it is 
concluded that a vector meson can explain the muon lifetime discrepancy, but not if the current indications 
on its mass prove to be correct. 

1. INTRODUCTION 

THE discrepancy between the theoretical and ex
perimental values of the muon's lifetime has been 

discussed many times. The most notable analysis of the 
then current situation was given by Feynman.1 Since 
then, additional experiments have been performed which 
place the discrepancy as high as 4.6%; so that, in spite 
of the numerous uncertainties, there can be no doubt 
at all that the muon's lifetime is not well understood. 

One of the strong candidtates for an explanation of 
this puzzle has always been the intermediate vector 
boson. Its popularity springs from the fact that for a 
suitably light boson, over half of the discrepancy is 
removed. This modification, however, decreases rapidly 
as the mass of the boson is increased. Experiments done 
at Brookhaven,2 and recently at CERN3 tend to confirm 
what is in fact assumed in this paper, namely that 
massive charged vector bosons mediate the strangeness-
conserving weak interactions. 

With this assumption, one is immediately forced to 
recalculate the electromagnetic corrections to muon and 
beta decays, since these are presently computed4-6 

using the four fermion interaction.7 We may then con
sider what effect these new corrections will have upon 
the muon's lifetime. 

In Sec. 2 we consider two formalisms for the descrip-

1 R. P. Feynman and M. Gell-Mann, Proceedings of the 1960 
Annual International Conference on High Energy Physics at 
Rochester (Interscience Publishers, Inc., New York 1960), pp. 
501-508. 

2 G. Danby, J. M. Gaillard, K. Goulianos, L. M. Ledermann, 
N. Mistry, M. Schwartz, and J. Steinberger, Phys. Rev. Letters 
9, 36 (1962). 

3 J. M. Gaillard, New York meeting of American Phyiscal 
Society, Jan. 1964; Bull. Am. Phys. Soc. 9, 40 (1964). 

4 R. E. Behrends, R. J. Finkelstein and A. Sirlin, Phys. Rev. 
101, 866 (1956). 

5 S. M. Berman, Phys. Rev. 112, 267 (1959). 
6 T . Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959). 
7 R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 

(1958). 

tion of the vector mesons, and derive the rules for Feyn
man diagrams to be used in each formalism. Section 3 
is devoted to muon decay. We calculate the energy 
spectrum for the decay electron, with both radiative and 
nonradiative effects included, and compute the effect of 
the mesons upon the effective value of the Michel 
parameter. In order to know the effect of the meson on 
nuclear beta decay and hence upon the vector coupling 
constant, one must first calculate the corrections to 
neutron decay. This is done in Sec. 4. Section 5 employs 
the results obtained in 3 and 4 to consider afresh the 
lifetime of the* muon. 

2. RULES FOR FEYNMAN DIAGRAMS 
INVOLVING VECTOR BOSONS 

(a) Proca Formalism 

The vector boson field was first studied by Proca.8 

The free field Lagrangian is 

where <pM is the meson's field operator, 

fnv~dn<pv— dpcpnj 

M=mass of the boson. 

The free field commutation relations can be deduced,9 

and also the propagator. One has 

{T(<pf(x)<pv(x')))0= - ( gM„H dMd„ )%AF(x— x'), 
\ M2 J 

which in momentum space becomes 

— i g^-ik^h/M2) 

(2TT)4 k2-M2+ie 
8 A. Proca, J. Phys. Radium 7, 347 (1936). 
9 G. Wentzel, Quantum Theory of Fields (Interscience Publishers, 

Inc., New York, 1949), p. 168. 
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The electromagnetic field aM is introduced minimally by 
by the substitution in £ 

dp—* dp—leap when acting on <pM, 

dp—* dp+ieap when acting on <pM*. 

Then the total Lagrangian is 

£ = £em\ £M\£lJ 

£i is the interaction Lagrangian 

£i^iel(d,cp*)<P
va^(d^/)^av--ali<p^(d^v) 

+a»<p*(dv<p^-e2av<pv*<pva»+e2a„<p*<pW. 

The canonical formalism is employed and Matthews10 

is invoked to remove the normal dependent terms. We 
see finally that there are two vertices of the boson field 
with the electromagnetic field. The first involves the 
emission or absorption of one photon, and the second, 
the emission or absorption of two photons. The factors 
present in momentum space are given in Fig. 1. 

The assumption that vector bosons mediate the weak 
processes means that the so-called "weak current" J\ 
is not coupled to itself by a contact interaction,7 but is 
instead coupled to the vector meson field <p\. The inter
action Lagrangian is 

Element 

Internal A - line 

Internal B - line 

Lepton - A vertex 

Lepton-B vertex 

Lepton-photon -
B vertex 

Photon - A 3 vertex 

Photon- B3 vertex 

Photon-A4 vertex 

Photon-B4 vertex 

Graph 
A 
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• minium-
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/ 
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}% 
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a 

Pf =B 

: . < 
a r 

B= ^ V 

»K, 

Value 

- i gPv 

(2TT) 4 k 2 - M 2 + i « 

i 1 
(2TT) 4 k 2 - M 2 + i < 

-fyxa 

• f t r y a 

. lef 

- e S a / 3 ( p + p % 

+ e(p + p'V 

+ e 2 2 a A a 

^ZQp,, 

where 

£i=fJx<Px+fJ\*<P*x, 

\pe, \pVc, yj/p, \pVfl are the field operators corresponding to 
er, ve, M~, *v> respectively, / i s the coupling constant and 
is dimensionless. 

Thus, there is just one type of vertex in this formalism. 
I t involves a lepton, its neutrino, and the meson. At 
such a vertex there is a factor — fyxa in a Feynman 
diagram. 

PROCA FORMALISM RULES 

Element 

Internal boson line 

Lepton vertex 

3-vertex 

4-vertex 

Graph 
Ol l l l l l l l l l l f 

^l l l l l l l i l l 

P 
p'f l^^r^^ 

pfi 
a 

P 

I ^^ 

Value 

(2TT)4
 k

2 - M 2 + ic 

- fy a 
X 

•[Pi9V+Pi0^"fl«i9(P + p/ ,J 

^ V ^ - g a ^ - Q a ^ J 

FIG. 2. Sttickelberg formalism rules. 

(b) Sttickelberg Formalism 

The Sttickelberg formalism11 replaces the field <Pp(x) 
by two fields Ap(x), B{x) 

<p^A»+(l/M)d»B, 

and the free field Lagrangian density is 

jgstiick^ -dliA*d»A'+dlJB*d'>B+M2A^A^~M2B*B . 

The solutions must then be restricted by the imposed 
subsidiary condition 

dfi<pfi(x) = 0, 

or equivalently, 

dpA»(x)-MB(x) = 0. 

Then all the negative energies are contained in the 
B field, which turns out in effect to be uncoupled.12 One 
can then derive the free field commutation relations and 
also the propagators. In momentum space the A field's 
propagator is 

C - i / ( 2 7 r ) 4 ] ^ / ( ^ 2 - M 2 + i e ) , 

and that of the B field is 

p / ( 2 7 r ) 4 ] l / ( ^ 2 - M 2 + i e ) . 

The electromagnetic field is introduced minimally, as 

FIG. 1. Proca formalism rules. 

10 P. T. Matthews, Phys. Rev. 76, 684 (1949). 

11 E. Sttickelberg, Helv. Phys. Acta 11, 225, 299 (1938). 
12 W. E. Thirring, Principles of Quantum Electrodynamics 

(Academic Press Inc., London, 1958), p. 168. 
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V 
k f H ^ v FIG. 3. Muon decay via a vector meson. 

before, and we find that the interaction Lagrangian is 

£i=ie[(dvAv*)Al'a>i-Ay*(dfiA
v)a>*']-e2A*Avaliai< 

+ietB*(dflB)a»- (d^Ba^+e^Ba^. 

Proceeding in the standard way via the canonical 
formalism and the interaction representation, we see 
finally that each of the two fields A M, B has two vertices 
with the electromagnetic field corresponding to the emis
sion or absorption of one and two photons. The factors 
present in momentum space are given in Fig. 2. 

Just as in the Proca formalism the weak current J\ is 
coupled to the field <p\. In the Stuckelberg formalism 

Jxv*=JxA X + ( 1 / W x d x 5 , 

and when the electromagnetic field is introduced mini
mally, this becomes 

JxA*+(l/M)Mdx-iea>)B. 

Thus we see that there are three types of vertices in 
which the leptons interact with the bosons. Two of these 
are simply the A or B being emitted or absorbed by the 
leptons. The third is a vertex peculiar to the B field. 
I t involves the leptons, a photon, and the meson inter
acting at a point. This gauge invariant vertex is a direct 
consequence of the derivative coupling of the B mesons 
to the leptons, and is unique to this formalism. The rules 
for Feynman diagrams in momentum space are given 
in Fig. 2. 

I t has been observed13 that there is no "normal" 
vector meson electrodynamical formalism. This is why 
we employ the two formalisms discussed above. That 
the formalisms we are using describe vector mesons with 
different electromagnetic properties is clear from the 
fact that their magnetic moments differ. The Proca 
boson has no anomalous magnetic moment, and con
sequently has a total moment of one Bohr magneton. 
Choice of the Stuckelberg formalism implies that the 
boson has zero magnetic moment, or equivalently an 
anomalous moment of —1 magneton. Whether this is 
the only difference in the bosons so described is not 
presently clear. Of course, both formalisms yield the 
same matrix element for muon decay without electro
magnetic corrections. This is clear because the electro
dynamics of the meson do not then enter. 

13 J. A. Young, thesis, University of California, Lawrence Radia
tion Laboratory Report UCRL-9563, 1961 (unpublished). 

3. ELECTROMAGNETIC CORRECTIONS 
TO MUON DECAY 

We shall now use the formalisms discussed in the 
previous section to calculate the electromagnetic cor
rections to muon decay: 

ijr->e-+ve+vlJL. 

We assume that the boson is coupled to the leptons in 
• the manner described. Then the diagram representing 

this process in the absence of electromagnetic effects is 
shown in Fig. 3. Eventually we expect the decay electron 

M spectrum to consist of four parts: (i) The bare spectrum 
shape having Michel parameter p = i , which arises from 

: a l the Fermi-type point interaction, (ii) Corrections due to 
i ee nonlocal effects induced by the vector meson (but not 
: e s including radiative effects). (iii) Radiative effects which 
[s. are present for the four fermion interaction, (iv) Electro
ns magnetic corrections arising solely from the presence of 

the charged vector boson propagating the process. These 
{s four classes may be characterized (for convenience): 

(i) no bosons, no photons, 

(ii) bosons, no photons, 

1[_ (iii) photons, no bosons, 

(iv) bosons and photons. 

(i) and (ii) arise from the diagram shown in Fig. 3. 
(iii) has been written down previously.4-6M 

I t is the fourth class which concerns us, although in 
. the course of deriving it we shall inevitably write down 
i the other terms. I t is of interest to observe15 that no 

'_ two of the published results are exactly the same for the 
, inner bremsstrahlung calculations. Our calculations 

„ agree with those of Kinoshita and Sirlin6 for the con
tribution to class (iii). We expect that class (iv) will, in 

e the main, contribute terms of the order of k2/M2 times 
the contribution from class (iii). k is the momentum 

, „ carried by the boson in the bare process. For muon decay 

w k2/M2<m(
2/M2<5xio-2, 

at 
th where the upper limit is calculated by using the lower 
ae bound on if, namely, one kaon mass. Such terms will in 
ca general be negligible, and we therefore make the ap-
n- proximation (in the radiative corrections only) of 
n. neglecting terms of order k2/M2 except where they are 
ie multiplied by a large number, for example, like 
m ln(me

2/M2). Terms proportional to memjM2 are corn-
is pletely negligible. 
°t As might be expected, a number of the Feynman 
i e graphs which we consider are divergent. These are 
°- handled in the standard way by introducing an ultra-

14 V. P. Kuznetzov, Zh. Eksperim. i Teor. Fiz. 37, 1102 (1959); 
39, 1722 (1960) [English transls.: Soviet Phys.—JETP 10, 784 
(1960); 12, 1202 (1961)]. 

15 C. R. Schumacher, Cornell University, thesis (unpublished). 
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violet cutoff X. One replaces the photon propagator 

1 

q2 q2 Mm in 

i / ~x2 y 
X m in 2 W-X 2 / 

Xmin is an infrared cutoff which prevents a low energy 
divergence, arising because the photon has zero mass. 
Xmin will disappear from the final answer because we 
consider both "pure" muon decay and the inner brems-
strahlung process 

M + Pe+Vp+7. 

The integer n is chosen to be just large enough to 
secure convergence of all of the diagrams under con
sideration. I t is important that the same integer n be 
used for all diagrams, since otherwise the procedure is 
not gauge invariant.15 

When using a cutoff, the "rules of the game" are to 
let X be infinite wherever possible. One retains only 
those terms which would be infinite in the limit of 
X —> oo. Similar considrations apply to Xmin and the 
limit Xmin —> 0. 

I t turns out that when one calculates the total matrix 
element for muon decay, including electromagnetic 
corrections, there are many terms proportional to the 
bare matrix element M0 which arises from Fig. 3. The 
total matrix element M has the form 

M=M*+a(A + B{k))Ms+aMu 

where a=e2/47r, putting h = c= 1. A is a constant; B(k) 
is a symbolic notation to indicate energy dependence. 
Mi is a matrix element not equal to Mo. We see that M 
can be rewritten 

M= (l+aA)lMo+aB(k)M0+aM1'] 

since we can neglect 0(a2). Thus the constant term A in 
no way affects the shape of the decay electron's spec
trum, and could be ignored if we were only concerned 
with the spectrum's shape. Since we are ultimately 
interested in the muon's lifetime we must be more 
careful. 

We can regard the factor l+au4 as a coupling constant 
renormalization. The coupling constant for muon decay 
is derived from the decay of O14. If an identical constant 
term a A «arises in the calculations of the radiative cor
rections to O14 decay it too can be absorbed into the 
coupling constant and in this case will have no ob
servable effect whatever since both coupling constants 
have undergone an identical renormalization. In this 
case the term aA can be dropped completely. However 
if the constant term aA arises in muon decay but not in 
nuclear beta decay then we may absorb aA into the 
coupling constant, as demonstrated, and it will not 
affect the spectrum shape, but we must retain it for use 
when calculating the lifetime of the muon. Examples of 
such a term would be one which depended on the mass 

(7) /A 

FIG. 4. Virtual photon diagrams: Stuckelberg formalism. 

of the muon, or a term whose sign differed when calcu
lating beta decay. 

Shaffer16 has calculated the electromagnetic cor
rections to muon and nucleon decay using the Proca 
formalism. However he has neglected all boson effects 
in the bremsstrahlung calculation,17 and consequently 
the spectrum he obtains does not satisfy Kinoshita's 
theorem.18 

(a) Stuckelberg Formalism 

For historical reasons we calculate the radiative cor
rections first using the Stuckelberg formalism. To order 
e2, there are 19 virtual photon diagrams which con
tribute to muon decay. These are shown in Figs. 4 and 5. 
The labeling of these diagrams is self-explanatory. We 
need n=2 for this formalism. 

The contributions of the self-energy diagrams (1), (2) 
(Fig. 4) can be written down immediately. Neglecting 
memjM2, 

M1+M2=d\ 
/ & 2 \ r ^2 menia l 
( l + — In 2 In + } 
\ M2/L meMa X m i n 2 J 

X{eyaavi)(v2yaay), 

16 R. A. Shaffer, Phys. Rev. 128, 1452 (1962). 
17 R. A. Shaffer (private communication). 
18 T. Kinoshita, J. Math Phys. 3, 650 (1962). 
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(13b) 

FIG. 5. Virtual photon diagrams: Stuckelberg formalism. 

where 

aif2 / MeMfj, \ 1 / 2 

2{2Tr)zM2\EeE^^J 

Ee, E^ coi, w2 are the energies of e~, fjr, i>ey va, respec
tively. pe, pp, pa, pv are their four momenta. Without 
confusion we may use the same letter to denote the 
particle and its spinor. 

After performing a mass renormalization, we find that 
M3 is proportional to the bare matrix element M0 . 

N o 

where 

l-(k2/M2) 

/3=--47r0/a! 

(eyBaviXvsr/afin), 

Consequently, we may by means of a coupling constant 
renormalization set Mz=0. Both Mi and M$ are pro
portional to ntefn^/M2, and so can be neglected: 
M4=ikf5=0. After coupling constant renormalization 

M6= 6(k2/M2) \n(\2/M2){ey«avx){v2yaaix). 

This term must be retained as we have not so far 
specified the size of the cutoff. Use of the Dirac equation 
renders both M7, M% of order mefn^/M2, and thus to 
our approximation M7=Ms=Q. Use of the standard 
reduction methods yields 

M%=-d(2pe-k/M2) ln(me
2/M2)(eyaav1)(hyaafi) 

after renormalizing the coupling constant. Similarly 

ATio.= -eil+k'/M^lH^/M^-lJey^apxXhyaafx). 

For this diagram however we may not renormalize the 
coupling constant since it is possible that the sign will 
differ when we calculate beta decay. Use of the Dirac 
equation leads us to ikf9b=0. Similarly, Miob=0. After 
coupling constant renormalization, 

Mn=-0(k2/M2) ln(X2/M"2)(e7«^i)(i>27«^). 

Similar considerations as were applied to Mwa lead us to 

Mu^el\n(\2/M2)-l2(eyaav1)(i>yaafJ). 

The two remaining diagrams (13a), (13b) are an 
order of magnitude more difficult to calculate than those 
so far considered. A four-sided loop integration has been 
done exactly by Wu19 for the case when all four sides of 
the loop are scalar mesons. His answer involves 192 
Spence functions.20 This function, written L(x)> is 
defined by 

rx l n ( l —/) 00 tn 

L(x)= / dt = - E 
Jo t =1 nL 

Fortunately, because of the approximations we can 
make, our answer is somewhat simpler. The integration 
can be done by an iterative method.21 Combining both 
contributions, 

M i 3 = 0 
tye'Pv m2 ( k2\ / k2 pe'pv\ 

In—+(l+—)r+4(l+ —^) 
M2 M2 \ M2) \ M2 M2 J 

k2 pe'pv\ MeWsy. 
ln-

2pe 

2pe-pu 2pe-pli m^ ma
2 X2 2pe>pvr\ 

l n _^ in 1 _in___(_2 In — \{eyaavi){v2yaCiix) 
M2 M2 M2 

Ma 

2m u 2pe-pil 2 r 
— - - I n —(eqavi)(i>2a'jjL)-{ 1-+ 

2 r ^pe'py.-m2 ^ 2pe-pu-

q* mu
z qz\- q2 

•In-
a —1 

(eqavi)(v2qa/x) \ , 

where r=2(co+ln^)(co+lnx—2co<) —2 ln#ln(l — x) + 2L(x)~2L(1), q=pe—pn 0/== §(1+^75) co=ln(wM/me), 

19 A. C-T. Wu, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 33, No. 3 (1961). 
20 W. Spence, An Essay on Logarithmic Transcendents (John Murray, London and Archibald Constable and Company, Edin

burgh, 1809). 
2 1D. Bailin, thesis, Cambridge University Library (unpublished). 
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co< = ln(Xrain/me), and x— l—q2/m{i
2. The variable x is the decay electron's energy measured in units of its maximum 

possible value: \m^ 
We can now sum the contributions to evaluate the virtual photon matrix element AMv 

AMv-T.Mi 

l \ M2)V 
3( l -co)+2(co+lnx- l ) (co+lnx-2w<) l n x - 2 l n x l n ( l - x ) + 2L(x ) -2L( l ) 

1 — x 

2m p 2pe'pn 
X(eyaavi)(v2yaaiJL) In— 

2 / fye-pv-m,? 2pe-pll\ 
{eqavi){y2a

fix)-\—( H In )(eqavi)(v2qan) 
q2\ q2 mu

2 / . 

We see that this result is just that of Behrends et al.A 

multiplied by the shape-dependent factor [l-\-(k2/M2)~]. 
I t is of interest to note that just as in the four fermion 
case the cutoff dependence has canceled. This is not 
especially surprising though, since all we are saying is 
that with the particular coupling constant renormaliza-
tion we have used we can make the muon decay result 
cutoff independent. I t will be seen that we have retained 
terms from diagrams (1), (2) (Fig. 4), which could have 
been omitted as a coupling constant renormalization. 
This was done simply for ease of comparison with 
Behrends et al.A So long as we perform an identical 
coupling constant renormalization for the nucleon case, 
it makes no difference. We must now compute the transi
tion probability |Af0+AJk/V|2. After performing spin 
summations, and integrating over the phase space of the 
neutrino and antineutrino, we obtain for the virtual 
photon contribution to the transition probability 

Pv(x)dx=[fm^/96(2TyM*~]dx{Zx2(3-2x) 

-cx*(x-2)+i^c2x\5-2x)l-(a/27r) 

XC{(w+lnx- l ) (co+lnx-2co<)+3( l -w) 

+ l-\nx-2lnxMl-x)+2L(x)-2L(l)} 

X[x2(3-2x)-cxz(x-2)~]+3x2lnx~]}, 

where c^m^/M2. 

(b) Proca Formalism 

There are six virtual photon diagrams which con
tribute to muon decay in the Proca theory. These are 
shown in Fig. 6. We must now use a cutoff cubed (^=3) 
since this is required to secure convergence of diagram 
(16). We have, therefore, 

M1,+M1,= ell+(k2/M2)TH^/ntem,) 
— 2 ln(mem^/\min2)+3'](eyaav1)(v2yaafjL). 

Diagram (16) is in fact quadratically divergent, but 
after mass and charge renormalizations we are left with 

Mu = 6(k2/6M2) In^/M^iey^dihyaafx). 

After coupling constant renormalization we have 

T2pe-k m2 k2-pe-k X2-
M17= — 0 In 1 I n — 

L M2 M2 M2 M2. 

X(eyaapi)(v2yaafx). 

Similarly, 

M18=-dl\n(\2/M2)-%l 

X{Bll+(k2/M2n+(k2-p»-k)/M2l 

X {eyaavi) (v2yaafi) + (1/M2) {ep^avi) (v2kan)} . 

As before, we may not perform coupling constant re
normalization in this case. Since the electrodynamics of 
the boson do not enter into diagram (19) one might 
expect its contribution to equal that of diagram (13) in 
the Stiickelberg formalism. However, this is not quite 
true since we are using different powers of the cutoff in 
the two cases. To obtain Mig from Mu one simply 
replaces ln(X2/M2) by ln(X2/A^2) —i- Thus, summing for 

hy v v 

FIG. 6. Virtual photon diagrams: Proca theory. 
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the virtual photon matrix element in this formalism 

AM F
P r o c a = Y,Mi 

t-14 

= AMv
stiick-+d 

f k2 k2-pe'k W-pp-k 3 / k2\~] 

.6M2 M2 M2 M2/. 
{eyaav^(y2yaaix) 

1 1 / X 3\ 
(epMvi)(f>2katx) \[ In . 

M2 \\ M2 2 / 

For reasonable values of X, M we may neglect 
0([k2/M2l ln [ \ 2 /M 2 ] ) and we have then 

AM F
P r o c a -AM F

S U i c k -
= * t [ * -H^/M2)Jey^ap1)(hyaa^. 

The difference between these two matrix elements corre
sponds simply to a coupling constant renormalization. 
Thus as far as the shape of the virtual photon contribu
tion to the spectrum is concerned the two formalisms 
yield identical results. Ultimately, when we consider the 
lifetime of the muon it is possible that this term will 
make some distinction between the two formalisms. For 
the moment, Pv(%) which we have written down pre
viously represents the virtual photon spectrum shape 
in either formalism. 

(c) Bremsstrahlung Diagrams 

We must now consider the inner bremsstrahlung 
process22 

fjT —> e~+ J>e+*V+7 • 

This is necessary in order to remove the infrared diver-

ty Hy \ y 

gence which is present in the virtual photon spectrum. 
In the Sttickelberg formalism there are eight diagrams 
which contribute. These are shown in Fig. 7. The 
photon's four momentum is K, and its polarization 
vector is e(X); the X is usually left understood. 

We obtain 

M2 = d et yaavi Khyad^ih2—M2)~ 
\ Pe+K-Me 7 

where 

ief2 

i\£eEuco1co22Z"0/ 

FIG. 7. Bremmstrahlung diagrams in Sttickelberg theory. 

22 The possibility of directly observing vector meson effects by 
a study of this process is the subject of a separate paper. D. Bailin, 
Nuovo Cimento (to be published). R. C. Brunet, Nuovo Cimento 
30, 1317 (1963). 

(27r)7/2\£eEMco1co22Z-o/ 

X&(p*-Pe-P,-P~K), k^pp-py. 
Also 

M20h = - (cp/M2)(et\:i/(pe+K-me)'](pe+K)av1) 

xivJimXW-M*)-1, 
M2ia=<p(eyaavi) 

X{v2yaal\/(p,~K~m,)^){k2
2-M2)-\ 

where 
k2=pe-hp?. 

Use of Dirac's equation shows that to our approximation 

i f 216=0, 

M22a = cp(eyaavi) {v2yaayi) (kx
2—M2)~l 

XiW-M^e-ih+h), 
and 

i f 226 = 0.. 

Also 

Mn= (<p/M2)(emp1)(y2kiali)(k1
2--M2yi, 

Af2 4=0. 

The total bremsstrahlung matrix element is then 

24 

MIB= E Mi, 
i=20 

and the transition probability | MIB | 2 is what we must 
calculate. 

Since we are working only to order k2/M2, we have 

\MIB\2=\M2Qa+M21a\
2 

+2 Re(Af20«t+M21af)(M20b+M22a+M2 ,) . 
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The transition probability is computed by averaging 
over initial spin states and summing over final spin 
states. Included in the latter is a sum over the polariza
tion vectors of the photon. To handle the infrared prob
lem consistently we must give the photon a small mass 
Xmin.5 We must therefore sum over the three polarization 
vectors possessed by a vector meson with nonzero mass. 
The summation takes the form 

£ e^e^^-g^+K^/X^*. 

The e / x ) satisfy 

e-K=0 and e 2 = - l . 

In our case the matrix element has the form 

so that 

Zx\MIB\2==-\M\*+(l/\min>)\M-K\\ 

However, 

This is expected on grounds of gauge invariance for a 
zero-massed photon, but is, in fact, exactly true21 even 
when Amin^O. I t can also be shown to be true for the 
case of the four fermion interaction. So we have that 

P(x) r PM-T"J' 2x2(3-2x) B> 
•°A H P(X)«TQ ,2X2L3-2X-CX(X-21 

Ex I Mr \M\ 

After the remaining spin sums have been performed we 
must integrate over the phase space of the neutrino and 
antineutrino, and also that of the photon. We obtain 
finally for the contribution from the bremsstrahlung 

w 
FIG. 8. Bremmstrahlung diagrams 

in Proca theory. 

(26) 

FIG. 9. Corrections to bare spectrum resulting 
from vector mesons. 

process in this formalism 

PiB{x)d% 

- [ a / % M
5 / ( 2 7 r ) W 4 9 6 ] ^ { [ ( 3 - 2 x ) x 2 - ^ 3 ( ^ - 2 ) ] 

X [ 2 ( w + l n x - l ) ( 2 1 n ( l ~ x ) - l n ^ + c o - 2 w < ) 

- 2 L ( x ) + 2 L ( l ) - ( 2 ( l - ^ ) / x ) l n ( l ~ o ; ) ] 

+ ( 5 / 3 ) ( l - ^ ) 2 + K l n ^ + c o - l ) ( l - ^ ) 

X [ 5 + 1 7 x - 3 4 ^ + ^ ( 5 + 1 3 a : + 4 9 a : 2 - 4 3 x 3 ) ] } . 

I t should be noted that if one puts c= (mli/M)2=0, one 
does not quite recover the expression given by Berman.5 

In the Proca formalism there are just three diagrams 
which contribute to the bremsstrahlung process. These 
are shown in Fig. 8. Since the electrodynamics of the 
boson do not enter into diagrams (25), (26), we have 

M25=M20a+M20b, 

M26 = M2la+M21b. 

To our approximation we have 

M27= ((p/M^iey^v^ihy^afji) 

I t turns out that the additional terms in this formal
ism do not supply an appreciable contribution in our 
approximation, and consequently the expression given 
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o'.\ d.z 03 
ELECTROMAGNETIC 

|_ CORRECTIONS TO THE SPECTRUM SHAPE 

'ECTOR MESONS I 

FIG. 10. Electromagnetic corrections to the 
spectrum shape. 

previously represents the bremsstrahlung contribution 
to the transition probability in either formalism. 

So the net result is that the shape of the decay elec
tron's spectrum is independent of the vector boson 
formalism employed. Combining the contributions of 
the virtual photons and the inner bremsstrahlung 
process, we obtain the total corrected transition 
probability: 

P(x)dx=lfmll
5/96(2TryM^2dxl3-2x-cx(x-2) 

+^cW(5-2x) + (a/2T)f(x)2, 

where 

/(x) = 2 [ 3 - 2 x - c x ( x - 2 ) ] i ? ( x ) + ( 6 - 6 x ) lnx 

+ [ ( l -x ) /3x 2 ] [ (co+lnx) (5+17x-34x 2 

+ | c [ 5 + 1 3 x + 4 9 x 2 - 4 3 x 3 ] ) - 2 2 x + 3 4 x 2 ] , 

1 — x\ 
c/f+21n -\ R(x)=-2L(x)+2L(l)-2+< 

- l n x ( 2 l n x - l ) + [3 l n x - l - ( l / x ) ] l n ( l - x ) . 

We are using the notation of Ref. 6. The infrared diver
gence has disappeared, of course; as it stands the spec
trum diverges at x = l . The correct procedure is to 
replace ln(l—x) by ln [ l — x+(Ax/e) ] , where Ax is the 
experimental energy resolution measured in these units. 
The change in the bare spectrum due to the presence of 
vector bosons is shown in Fig. 9. Figure 10 shows the 
effect of the bosons on the electromagnetic corrections. 

We may calculate the effective value of the Michel 
parameter for the spectrum. Using a least-squares fit in 
the range 0 < x < 0 . 9 5 , we obtain, after some labor 

Peff=f+0.3387c+0.2532c2-(o:/27r)[47.99-8.165c]. 

For the largest possible value of c—0.0458, 

Peff=!-0.0393. 

I t is unlikely that even the most sophisticated experi
ments currently possible could detect the electromag
netic boson effects. 

We may integrate the spectrum over all values of x 
to obtain the lifetime. 

r^=rQ~{l+ic+^+^( 7 r 2 V l + f c ) l , 

TO is the lifetime calculated in the absence of electro
magnetic corrections. I t involves of course the coupling 
constant which is at present not determined. Note that 
the lifetime is unaltered if one lets the mass of the elec
tron become zero. Although the spectrum depends 
logarithmically upon me (through co) the dependence on 
co is removed when one integrates over x. Actually this 
is just a verification of a general theorem of Kinoshita.18 

I t does, however, provide a useful and independent 
check on the spectrum we have obtained. 

Now, 

ic+c2/25< 2.76X10-2. 

Consequently, — Ar / r 0 <2 .34% when one includes both 
radiative and nonradiative corrections. The change in 
the lifetime which we are calculating here is, of course, 
the correction arising from the change in shape of the 
decay electron's spectrum. Corrections due to the 
coupling constant cannot be considered until we have 
dealt with beta decay. Consequently the numbers we 
have given are the same for both formalisms. 

4. ELECTROMAGNETIC CORRECTIONS TO NEUTRON 
DECAY AND NUCLEAR BETA DECAY 

We have seen in Sec. 3 that the effect of the bosons 
on the decay electron's spectrum shape cannot explain 
all of the muon's lifetime discrepancy. Indeed the elec
tromagnetic effects have little or no effect upon the 
lifetime. What effect there is is due to the nonradiative 
correction to the bare spectrum induced by nonlocality. 

However, it is still conceivable that the bosons can 
explain the discrepancy. As was remarked before, in 
order to calculate TO, the bare lifetime, we must first 
know the coupling constant / , or more precisely p. This 
is assumed to be the same as the vector coupling con
stant for nuclear beta decay. If the bosons have a 
significant effect upon the beta decay calculation, then 
this will affect / which is calculated from the observed 
beta decay lifetime. And consequently the theoretical 
value of the muon lifetime will be changed because of 
these corrections to the coupling constant. Actually, the 
process used is the 0 + —> 0 + decay of O14. 

To calculate the corrections to nuclear beta decay 
one treats the nucleus as a collection of independent 
nucleons. Corrections due to nuclear physics can then 
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be estimated afterwards.23'24 We must therefore consider 
what effects the bosons will have upon the decay of a 
single nucleon. This is the problem to which we now 
turn. 

We assume that the interaction of the mesons with 
the nucleons is given by 

where 
£l=ja<pa+ja*<pa\ 

\pn, tyv a r e the field operators for the neutron and proton, 
respectively. The rules for Feynman diagrams which 
follow from this interaction are completely analogous to 
those already written down for the lepton currents. So 
we will not repeat them. The number L is about 1.25 
for neutron decay. The Feynman diagram representing 
the decay of the neutron, in the absence of electro
magnetic effects, is shown in Fig. 11. 

The calculations for this process are simpler, in one 
respect only, than those for muon decay. Because of the 
small difference of the neutron and proton masses we 
may neglect all terms of order k2/M2, where k = pe+pp, 
as before, 

k2/M2=0(me
2/M2) <10-\ 

Thus the bare matrix element is 

-if /meMnMp\
m 

Mo=—[ I 
\EeEnEpcoi/ 

X(eyaap1)(pyaa"n)5(N-P-pe-pp). 

are four momenta of neutron and proton. En, Ep, 
and Mn, Mp are their energies and masses, respectively. 

Complication arises because in this process we may 
not take the boson's mass M as being large compared to 
those of the other particles involved. Indeed M may 
well be less than Mp. Fortunately many of the diagrams 
we are led to consider differ only in that they have a 
nucleon current replacing the muon current. The matrix 
elements of such diagrams can be written down at once. 

(a) Stiickelberg Formalism 

For the Stiickelberg formalism there are nineteen 
virtual photon diagrams which contribute to neutron 
decay. They are shown in Figs. 12 and 13. They are com-

FIG. 11. Neutron decay via a vector meson. 

23 W. M. MacDonald, Phys. Rev. 110, 1420 (1958). 
24 H. A. Weidenmuller, Phys. Rev. 127, 537 (1962). 

FIG. 12. Virtual photon diagrams: Stiickelberg formalism. 

pletely analogous to those arising in muon decay and 
we have labeled the diagrams accordingly. I t should be 
noted that in this process we have both charged particles 
in the final state, whereas in muon decay this was not 
the case. This difference occasionally has an important 
effect, as we shall see. 

By a simple substitution 

M1+M2=dl\n(\2/meMp)-2HmeMp/Xmin)+i2 
X(eyaav1)(pyaa"n), 

where now 

aif2 fmeMpMn\112 

6=- s(N-P-pe-p,). 
2(2iryM2\EeEnEpo3j 

Using the same coupling constant renormalization as 
was used for muon decay I f3=0 . Just as for muon 
decay, if4=Jfcf5=0. Coupling constant renormalization 
and neglect of k2/M2 imply, M6 = 0, M7=M8=0, 

Diagram (10) (Fig. 5) is the first one which differs 
essentially from its counterpart in muon decay. Our 
previous approximation is no longer valid. We may, 
however, set& = 0 without neglecting significant terms. 
By virtue of a freak cancellation we are left finally with 

M 10«= - d[\n(\2/M2) - iX&Y"av1)(pyafi"n). 
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For simplicity in doing the integrals we h a v e assumed 
t h a t Z = l , or a"= a. Al though i t is possible t h a t the 
pseudovector coupling can induce a cont r ibut ion to t he 
vector coupling b y means of the electromagnet ic effects, 
there is good reason to believe t h a t th is assumpt ion 
does not , in fact, affect the results appreciably. 2 1 

With this assumpt ion 

ATisa= - A f V { [ 4 ^ - P / 8 i - 4 / 8 8 + 8 / 8 i ] 

X (eyaavi) (pyaan)+2 (eyaav^ (ppeJs2yaan) 

— 2{ePJZ2y
aavi)(jjyaan)} , 

Min=0{^+(>JiJt(>J2z—Jzh]{eyCiav1){pyaan) 

+6 (ePavi) (p J^an) — 2 (ePai>i) (p JZ4an)} , 

where 

M2 11 17 CO2 /CO3 CO2 3C0 

—+—co + -6 / i = ln +—co + ( + 1 ) lnco 
X2 6 20 10 \ 2 0 2 2 0 

(I3a) 'n (13b) 

FIG. 13. Virtual photon diagrams: Stiickelberg formalism. 

Di rac ' s equat ion allows us to set M106 — O. Coupling 
cons tan t renormalizat ion implies Mn = 0. D i a g r a m (12) 
(Fig. 5), like (10), m u s t be recalculated. Set t ing ^ = 0 
we ob ta in finally 

M i 2 = ^ { [ l n ( X V ^ 2 ) + ( l - - | c o ) l n c o - ( 4 c o - - c o 2 ) 1 ^ ( c o ) ] 

X (eyaav1)(pyaa"n) + [ - 1 + ( J co -1 ) lnco 

+ ( 4 c o - c o 2 ) 1 / 2 / ( c o ) ] [ ^ ( P / i r p ) ^ i ] ( p a / / # ) , 

where 

w = M2/Mp
2>0.277, 

a n d 
2—co 

t(co) = t a n " 1 tan~ 
(4co-co2)1/2 

T h e form we have wr i t t en assumes t h a t co<4. Should i t 
t u r n ou t t h a t co>4 we use the correct logar i thmic con
t inua t ion of the inverse t angen t . T h a t is 

1 (1 
A 

I co4 3cod 12 16 \ 2 
+ C02 + —CO ) /(CO) , 

V 20 5 5 5 / (4co-co 2 ) 1 / 2 

( - — + ~ ) l n o o 
\ 12 2 / 

Scoz 2CO 4 \ 

+-)-
Y12 3 3 / ( 

2/(co) 

P (3 co / l co - 2 

— c o 
1 

(4co-co2)1 / 2 ' 

1 3 1 co 

/„ = a>+-
6 120 2( 

12 3 3/ (4co-co 2 ) 1 / 2 

/ l CO C0 2 \ 
+ — lnco 

\co 4 2 4 / 

/ 4 2co2 co3\ /(co) 

co'z Zoo6 co'z c o \ 
+-)ln< 

20 \ 4 0 6 4 / 

/ 1 3 co4 8 4co\ 
- co 3 « H ) 

\ 6 0 40 15 1 5 / 

3 3 12/(4co-co2)1 / 2J 

2/(co) 

(4co-co2)1/2 

- 1 
/ 8 1 = -

(4co-co2)1/2 
-/(co) -

1 co+(co2-4co)1 / 
4M*Mp\p\ 

2co< ln -
1—jg 

l n -
(co2-4co)1 /2 co-(co 2 -4co) 1 / 

As before, d i ag ram (13) (Fig. 5) is the "most difficult 
case to handle . Since t he invar ian t center-of-mass energy 
of the electron a n d p ro ton is above the no rma l threshold 
some of the integrals we encounter have singularit ies in 
the range of in tegrat ion. Th i s means t h a t the ampl i tude 
for t he process is complex. 

Actual ly, we m a y throw away the imaginary p a r t of 
t he integral because i t never contr ibutes to t he t ransi 
t ion probabi l i ty . 2 1 Consequent ly , we will only wri te 
down the real p a r t s of t he integrals in all t h a t follows. 

i 1 - 0 / 2$ \ n 
+ J l n 2 2 T T 2 - 2 L ) , 

1 + 0 \ l + j 8 / J 

where p is the three m o m e n t u m of the electron and 

0 = | p | / J E « , 

Jz2 — -
- c o - 2 2pe'P 

-mco+21n 
2MWP

2L 2 

+ l + (4co-co2)1/2/(co) |- - l n -
1-/3 

2M2Mp\p\ 1 + 0 



E L E C T R O M A G N E T I C C O R R E C T I O N S TO M U O N A N D 0 D E C A Y S B177 

J I. 
ilf 2L3 

1 3-co 4-5co+co2 

— lnco-
6 3(4 

-5co+co2 n 
/(«) 

:CO~C02)1/2 J 

i/ e 

/84 = [ f - i c o + ( i - i c o + | c o 2 ) lnco 

+ (-w+ta;2- |a )
3)2/(co)/(4co-w2)1 / 2] , 

1 7 CO2 / CO CO2 C03\ 

/ 8 5 = <H hi 1 I lna? 
6 10 5 \ 2 2 10/ 

/co4 7 13 2 \ 2/(co) 
- M ' C03~| "CO2 CO I . 

\10 10 10 5 /(4co-co2)1/2 

We may now combine these contributions and we have 
for the total virtual photon matrix element in this 
formalism 

13 

AA*VStt ick-=L Mi. 

When this is done we see that this matrix element is 
independent of the ultraviolet cutoff. This is of course 
only after we have performed mass and charge renormal-
izations. Nevertheless the result is somewhat surprising 
since this is not the case for the calculations using the 
conventional theory.6 In its place, however, we have a 
dependence on the mesons' mass M for which we may 
not take the limit M —> GO . Consequently the limit 
M —» oo does not yield the answer obtained using the 
point interaction.25 In a sense therefore, the boson mass 
M has provided a cutoff which renders the over-all 
answer finite. I t may be that by a suitable choice of 

n (19) 

FIG. 14. Virtual photon diagrams: Proca theory. 

gauge for the photon propagator one can carry through 
the whole calculation so that the cutoff appears only in 
the "charge renormalization" diagrams.26 I t is not 
obvious that this can be done because we have four 
diagrams which are at present cutoff-dependent. 

Finally, after performing spin sums and integrating 
over phase space, we have for the virtual photon con
tribution to the transition probability in this formalism 

Mv 9 1 1-/3 
" 2 

/4 f ar 2 1-/3 Mp 9 1 
Pv(Ee)dEe= Ee*(Ee-Eo)2dEe\ 1 4co<+-u< In In + - + — hv 

4TTW 4 I 2TTL 13 1+/3 me 2 2/3 

2 / / 2 0 \ \ / X \ 1 

i+/3 

where 

1+/3 2p6'P 3co 3a)2-12co n] 
f - 2 1 n — — + 1 — - l n c o H - - —*( w ) > 

(4co-co2)1/2 

E0=Mn—Mp. 

(b) Proca Formalism 

The six diagrams which contribute when one uses the Proca formalism are shown in Fig. 14. In fact we only 
need to calculate one diagram: (18). 

Mu+M1^el\n(X2/meMp)-2 ln(w e l fPAmin2)+3](e7^i)(p7a6Z /^), Afi 6=Afi 7=0, 
M1s=-d{(ey«av1)(pyaa''n)Bln(\*/M*) 

+ le(P/Mp)av1Jpaf/n)l^+(-^+^+l) lnco-K2co+l)(4co-co2)1^(co)]}. 

As before, we may set Mw = Mu so long as we replace ln(\2/Af2) by ln(\2/Jlf2) — J. Then combining these matrix 
elements we obtain 

19 

AMvFroca= E Mi 
t=14 

25 See S. M. Berman and A. Sirlin, Ann. Phys. 20, 20 (1962). 
26 D. B. Pearson and J. C. Taylor, Nucl. Phys. 37, 689 (1962). 
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AMvProca- AMvStiick-= -d{(eyaaVl)(pyaan)\jl ln(X2 /^"2)-Jco+(Ja;2-fco+f) lnco+(Jco-2)(4co-co2)1/2/(co)] 

+ Ze(P/Mp)av1Jpa"n)t- l+fw+(co-Jco2) lnco+f(l-a;)(4W-cu2)1/2/(a))]}. 

I t should be noticed now that although this matrix element is not cutoff-independent the cutoff enters with 
exactly the same coefficient and sign as in muon decay. This means that we can drop this term in both processes and 
regard it, along with other terms like this, as a renormalization of the coupling constant. In this way the cutoff 
has dropped out of the Proca formalism in just the same way as it was removed from the Stiickelberg formalism. 
With this renormalization we shall have for muon decay 

A M F P r o c a = A M F S t u c k ( j 

and for neutron decay 

AMF
Proca-AMyStUck- =-${(eyaan)(pyaa"n)[9/4-±a>+ (\o>2-§co+f) lno;+ ( Jco-2) (4u-co 2 ) 1 ' 2 ^) ] 

+ te(P/Mp)ap1Jpan)£-l+iu+(a>-±a>2) lnco+f(l-co)(4co-co2)1/2^(co)]}. 

Finally, for the virtual photon transition probability we have 

X[2- |co+(Jco2-5co/4+|)lnco+(ico-ll /6)(4co-co2)1 /2 /(co)]. 

(c) Bremsstrahlung Diagrams 

The eight inner bremsstrahlung diagrams which contribute in the Stiickelberg formalism are shown in Fig. 15. 
However, to our approximation the total bremsstrahlung matrix element, 

24 

MIB= Z Mi, 

is just the same as for the case without vector bosons. Similar considerations apply to the diagrams in the Proca 
theory; these are shown in Fig. 16. Then the bremsstrahlung contribution to the transiton probability in either 
formalism is 

af i 2(E0-Ee) 28 4 £ 0 E0
2+6EeE0-31Ee

2 1 + 0 
PIB(Ee)dEe= Ee

2(Ee-E0)
2dEA 4a><-4 In + + — ln-

87rW4 I me 3 3Ee 12(3Ee
2 1-

1 
< | 2co<li 

1 + 0 1 + 0 
-X 

1 - 0 1 - 0 2(E0-Ee)
2 / l - 0 \ / l + 0 \ -ii 

2co<ln In In +L[ )-L[ + 2 L ( 0 ) - 2 Z ( - 0 ) . 
1 + 0 1 + 0 Eeme \ 2 / \ 2 / J J 

We now combine the contributions of the virtual and bremsstrahlung photons. Following Kinoshita and Sirlin6 

we make the approximation of neglecting the electron's mass wherever this does not lead to a spurious divergence. 
This means we set 0 = 1; then writing x=Ee/Eo, we have for the Stiickelberg formalism 

f f aT Mv 7 2TT2 /1-X 3 l - x \ 
pstiick.(x)dx= E0

b(l-x)2x2dx\ H 3 In f-27r2 l -4( lnx- l ) h m — 1 
4 x W 4 I 2TTL 2E0 2 3 \ 3x 2 x / 

(1-x)2 / 4 ( l - x ) (1-x)2 l-x\ 3w 12co-3co2 n 
_| l m + f t 3 + |-41n U lnco+ /(co) 

6x2 \ 3x 6x2 x / 2 (4o>-co2)1/2 J 

where tt = \n(2Eo/tne)> For the Proca formalism one has 
In the above expression the 27r2 term is just the 

Coulomb contribution given by the F function.27 (r-1)proca=r0-1{l+(a/27r)[3 ln(ilfp /2E0)-5.81—|w 
Since this term is included in the ft values it will +(Jco2+Jco+f) lnw+(|co+7/6)(4o)-co2)1/2/(co)]}. 

henceforth be omitted. Integration gives for the lifetime 
Just as for the muon decay case the lifetime again 

(r-1)stixck,= r0-
1{l+(a/2Tr)Z3ln(Mp/2Eo) — 7M satisfies Kinoshita's theorem.18 But this was obvious 

+fco lnw+3(4co—co2)1/2/(co)]}. earlier since the dependence of the transition probability 
«J .M.Blat t and V. F. Weisskopf, Theoretical Nuclear Physics upon *2 *S identical to t h a t ob ta ined using the conven-

(John Wiley & Sons, Inc., New York, 1952), p. 680. tional theory. As remarked before we may not take the 
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TABLE I. The muon lifetime discrepancy. 

Stiickelberg Proca 
No vector mesons M=1.3MP M = MK M~1.3MP M = MK 

No Corrections 1.65% 1.65 1.65 1.65 1.65 
Muon decay radiative corrections 0.42% 0.42 0.42 0.42 0.42 
O14 radiative corrections 1.7% 1.78 1.43 1.69 1.2 
Nonradiative: screening 0.265% 0.265 0.265 0.265 0.265 
Nonradiative: vector bosons 0 —0.45 —2.75 —0.45 —2.75 
Nuclear physics - 1 . 1 7 % -1 .17 -1 .17 -1 .17 -1 .17 
Discrepancy +2.865% +2.50 -0.155 +2.40 -0.385 

limit M —> oo. However, for large values of co the radia
tive corrections behave like 

6ln(M/Mp), 

which should be compared with 6 ln(\/Mp) obtained 
previously. So that the boson mass is indeed an effective 
cutoff. This result was also obtained by Lee using the 
^-limiting formalism.28 

Now we are ultimately interested in the beta decay 
of O14, since this is the process used to determine the 
coupling constant. To obtain the radiative corrections 
for this process one simply inserts the relevant value of 
EQ. Bardin et al.29 have calculated E0 for O14 

£o°14=1.8126±0.0014 MeV. 

Using this number we can calculate the electromag
netic corrections to the lifetime for three values of co. We 
take co=0.277 which is the smallest possible value, co= 1 
corresponding to M=MP, and co= 1.7 which corresponds 
toM=1.3Mp. 

n (22 a) n (22 b) 

FIG. 15. Bremsstrahlung diagrams in Stiickelberg theory. 

28 T. D. Lee, Phys. Rev. 128, 899 (1962). 
29 R. K. Bardin, C. A. Barnes, W. A. Fowler, and P. A. Seeger, 

Phys. Rev. 127, 583 (1962). 

Then for the Stiickelberg formalisms 

co-1.3 : A T / T 0 = - 1 . 7 8 % , 

co-1.0 : A T / T 0 = - 1 . 6 6 % , 

co-0.277: A T / T 0 = - 1 . 4 3 % , 

and for the Proca formalism 

co=1.3 : AT/TO = - 1 . 6 9 % , 

co=1.0 : A r / r 0 = - l . S 4 % , 

co = 0.277: A T / T 0 = - 1 . 2 0 % . 

These values should be compared with the value 
A T / T 0 = —1.7% obtained using the conventional theory. 

5. THE MUON LIFETIME DISCREPANCY 

The situation with regard to the muon lifetime is 
somewhat confused. In the first place the experimental 
value is uncertain seeing as how the latest measurement 
by Farley30 has not yet been published. We base our 
conclusions on the previous value obtained by Charpak 
et al.n The corrections to the nuclear matrix element are 
not completely decided23*24; we use the later value of 

\y-
w — ^ " " P 

n (25) 

VI 
* i Lp 

FIG. 16. Bremsstrahlung diagrams in T~^ 
Proca theory. / . 2 6 ) 

v f 

n (27) 

30 F. J. M. Farley, T. Massam, T. Muller, and A. Zichichi, Pro
ceedings of the 1962 Conference on High Energy Physics at CERN 
(CERN, Geneva, 1962), p. 415. 

31 A. Charpak, F. J. M. Farley, R. L. Farwin, T. Muller, J. 
Sens, and A. Zichichi, Phys. Letters 1, 16 (1962). 
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Weidenmuller.24 Nonradiative effects due to electron 
screening, nuclear electromagnetic form factor effects, 
iT-capture competition and second forbidden matrix 
element corrections seem to be agreed upon.32 All of 
these effects are included in Table I. 

I t is fair to say that a vector boson can explain the 
current muon lifetime discrepancy, although its mass 
should not be much greater than 500 MeV. If the indi
cations from CERN3 that M ~ 1.3MP are confirmed, we 

32 L. Durand, L. F. Landowitz, and R. B. Marr, Phys. Rev. 
Letters 4, 620 (1960). 

T TNITARITY implies that a Regge-pole term 
U ftt)/i-*(t) (i) 

near a sharp resonance at t=to, aR(k) = l satisfies the 
relations PR~T (the width of the resonance) and 
&I<&PR- Since &R is positive at to, the latter condition 
implies that the phase of /3 must essentially be a multiple 
of 2TT at a resonance.1 This is a strong restriction on the 
phase; the value it takes, namely, —0, 2w, etc., deter
mines to a large extent how fast # or rather the reduced 
residue y (see below) falls off for / < 0 . The behavior in 
the negative t region is of some interest since it was 
pointed out recently2 that if y of the Pomeranchuk pole 
(P) showed a sharp diffraction-type fall off for small — t, 
then the Regge-pole approximation3 may still be ade
quate in explaining the high-energy behavior of scat
tering amplitudes. The question of shrinkage or absence 
of it can then be understood in terms of appropriate 
linear combinations of P with other important poles.2 

We shall show below that if f° lies on the P trajectory 
and if the phase is 2w at // then one obtains an exponen
tial type falloff for small —/, with a width comparable 
to the one observed experimentally, and a power falloff 

* Work supported in part by the U. S. Atomic Energy Com
mission. 

1 More precisely, 2mr-{-0(<xi). For a sharp resonance, a/<<Cl. 
2 B. R. Desai, Phys. Rev. Letters 11, 59 (1963). 
3 References to the earlier theoretical work are given in Ref. 2. 

can only conclude that a sizeable discrepancy still re
mains to be explained. 
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for large — t.A Potential theory results, however, indi
cate that near a resonance the phase should stay small 
and not approach 2ir.5 If this is assumed to be true also 
for P then we find that it is impossible for y to achieve 
a diffraction-type behavior; the width turns out to be 
at least an order of magnitude larger than the experi
mental values. This would strongly suggest that the 
pole-hypothesis is inadequate and that perhaps other 
singularities in addition to the commonly assumed poles 
play an important role. 

Consider elastic 7T7T scattering with s the square of the 
c m . energy and / the square of the momentum transfer. 
We shall take BeV as the unit of mass. For large s, the 
contribution of a Regge pole with position a(t), to the 
scattering amplitude Ai(s,t) is given by 

2 ^ 0 r ) 1 / 2 ( 2 a + l ) r ( i + a ) 

X - W ) , (2) 
\ sinxa / \2M2/ 

4 Even if f° turns out to be 1~ or 3~ [see W. Frazer. S. Patil, and 
N. Xuong (to be published) ] the essential points of this paper will 
not change provided that there exists a 2+ particle on the P 
trajectory at a higher mass (<2 BeV). 

5 A. Ahmadzadeh, thesis, University of California (un
published). The results, based on Yukawa potentials, were com
municated to me by G. F. Chew. 
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At a sharp resonance the phase of a Regge residue (3(t) should be essentially a multiple of 2x. The value 
it takes determines to a large extent the falloff rate of /3 and of the reduced residue y=p/va for / ̂  0. If f° lies 
on the Pomeranchuk trajectory and if the phase there is lie then it turns out that y if) falls off exponentially 
for small — t with a width comparable to the one deduced from the widths of the high-energy diffraction 
peaks, and for large —/, y(t) has a power fall-off. On the other hand, if the phase at f° remains small then 
the width is at least an order of magnitude larger. The latter case is indicated on the basis of the potential 
theory results. However, it is possible that the former may be a purely relativistic phenomenon peculiar 
to the Pomeranchuk pole in which case the Regge-pole hypothesis would be consistent with the high-energy 
experiments. 


